Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 12: 733921, 2021.
Article in English | MEDLINE | ID: covidwho-1551500

ABSTRACT

A hallmark of COVID-19 is a hyperinflammatory state associated with severity. Monocytes undergo metabolic reprogramming and produce inflammatory cytokines when stimulated with SARS-CoV-2. We hypothesized that binding by the viral spike protein mediates this effect, and that drugs which regulate immunometabolism could inhibit the inflammatory response. Monocytes stimulated with recombinant SARS-CoV-2 spike protein subunit 1 showed a dose-dependent increase in glycolytic metabolism associated with production of pro-inflammatory cytokines. This response was dependent on hypoxia-inducible factor-1α, as chetomin inhibited glycolysis and cytokine production. Inhibition of glycolytic metabolism by 2-deoxyglucose (2-DG) or glucose deprivation also inhibited the glycolytic response, and 2-DG strongly suppressed cytokine production. Glucose-deprived monocytes rescued cytokine production by upregulating oxidative phosphorylation, an effect which was not present in 2-DG-treated monocytes due to the known effect of 2-DG on suppressing mitochondrial metabolism. Finally, pre-treatment of monocytes with metformin strongly suppressed spike protein-mediated cytokine production and metabolic reprogramming. Likewise, metformin pre-treatment blocked cytokine induction by SARS-CoV-2 strain WA1/2020 in direct infection experiments. In summary, the SARS-CoV-2 spike protein induces a pro-inflammatory immunometabolic response in monocytes that can be suppressed by metformin, and metformin likewise suppresses inflammatory responses to live SARS-CoV-2. This has potential implications for the treatment of hyperinflammation during COVID-19.


Subject(s)
COVID-19/immunology , Metformin/pharmacology , Monocytes/drug effects , Monocytes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Cells, Cultured , Humans
3.
J Leukoc Biol ; 109(1): 7-8, 2021 01.
Article in English | MEDLINE | ID: covidwho-932446

ABSTRACT

Discussion on the observed association between unique populations of circulating monocytes and severity of COVID-19.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Cytokines , Humans , Lighting , Monocytes , SARS-CoV-2
4.
Geroscience ; 42(4): 1051-1061, 2020 08.
Article in English | MEDLINE | ID: covidwho-600999

ABSTRACT

The ongoing pandemic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a disproportionate number of severe cases and deaths in older adults. Severe SARS-CoV-2-associated disease (coronavirus disease 2019 (COVID-19)) was declared a pandemic by the World Health Organization in March 2020 and is characterized by cytokine storm, acute respiratory distress syndrome, and in some cases by systemic inflammation-related pathology. Currently, our knowledge of the determinants of severe COVID-19 is primarily observational. Here, I review emerging evidence to argue that monocytes, a circulating innate immune cell, are principal players in cytokine storm and associated pathologies in COVID-19. I also describe changes in monocyte function and phenotype that are characteristic of both aging and severe COVID-19, which suggests a potential mechanism underlying increased morbidity and mortality due to SARS-CoV-2 infection in older adults. The innate immune system is therefore a potentially important target for therapeutic treatment of COVID-19, but experimental studies are needed, and SARS-CoV-2 presents unique challenges for pre-clinical and mechanistic studies in vivo. The immediate establishment of colonies of SARS-CoV-2-susceptible animal models for aging studies, as well as strong collaborative efforts in the geroscience community, will be required in order to develop the therapies needed to combat severe COVID-19 in older adult populations.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/immunology , Monocytes/physiology , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Age Factors , COVID-19 , Coronavirus Infections/pathology , Humans , Immunity, Cellular , Pandemics , Pneumonia, Viral/pathology , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL